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Abstract: The field of view of optical coherence tomography angiography (OCTA) images of 
the retina can be increased by montaging consecutive scans acquired at different retinal 
regions. Given the dramatic variation in aberrations throughout the entire posterior pole 
region, it is challenging to achieve seamless merging with apparent capillary continuity across 
the boundaries between adjacent angiograms. For this purpose, we propose herein a method 
that performs automated registration of contiguous OCTA images based on invariant features 
and uses a novel montage algorithm. The invariant features were used to register the 
overlapping areas between adjacently located scans by estimating the affine transformation 
matrix needed to accurately stitch them. Then, the flow signal was compensated to 
homogenize the angiograms with different brightness and the joints were blended to generate 
a seamless, montaged wide-field angiogram. We evaluated the algorithm on normal and 
diabetic retinopathy eyes. The proposed method could montage the angiograms seamlessly 
and provided a wide-field of view of retinal vasculature. 

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

Since the first time-domain optical coherence tomography (OCT) [1] article was published in 
1991, OCT technology has developed rapidly. With faster scanning using Fourier-domain 
modalities, current OCT devices allow acquisition of three-dimensional data representing the 
retinal layered structure rapidly. Optical coherence tomography angiography (OCTA) detects 
the variation of OCT signal reflectance over scans repeated at the same location in order to 
evaluate the microcirculation flow in vivo; allowing sensitive, fast (< 3 seconds), and high 
resolution volumetric imaging of the retinal flow [2]. This technique has demonstrated utility 
in key ophthalmic diseases such as diabetic retinopathy, age-related macular degeneration, 
and glaucoma, allowing visualization of vascular details. In addition, OCTA allows more 
reliable quantification of the vasculature changes [3]. With the improvement of the hardware 
and the progress of processing algorithms, a current research endeavor in OCTA is to increase 
the achievable field of view (FOV) of images. Previous studies have shown that wide-field 
OCTA can reveal more clinically useful information [4,5]. 

The availability of faster light sources has allowed acquisition of wide-field OCTA in a 
single scan [6,7]. This approach to increase the FOV faces two fundamental challenges. First, 
the retinal curvature covered by the large FOV and limited focusing depth of OCT result in B-
scans that are only in focus centrally, and defocused at the periphery [8]. Secondly, 
propagation of the scanning beam across a larger FOV induces larger wavefront aberrations 
that are difficult to compensate for without the assistance of adaptive optics [9]. As a 
consequence, the beam size at the peripheral retina is large and aberrant, deteriorating the 
lateral resolution of the instrument and degrading the images. An alternative to wide-field 
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scanning is to montage smaller, but high-quality scans with overlapping areas to create a 
wide-field image. This approach is more cost-effective and amenable to improvement using 
the existing equipment. 

The main task of mosaicking techniques that reproduce wide-FOV from stitching small-
FOV scans is to conceal the seam between individual angiograms by ensuring capillary 
overlap and background level homogeneity. Previous research on montaging retinal images 
used fundus images with large vessel patterns and intersections to register overlapping areas 
as well as post-processing of the edges in order to get a seamless, wider fundus image [10–
16]. Accomplishing the same task in OCTA requires the use of more challenging image 
processing techniques, given the finer vessel details visualized by OCTA. Moreover, in order 
to attain a large FOV by mosaicking, the individual scans need to be large enough to not 
require an unreasonable number of acquisitions from the subject, making 3 × 3-mm scans 
impractical. However, the standard 6 × 6-mm angiograms are not isoplanatic. For that FOV, 
the retinal curvature in the periphery of posterior pole or in near-sighted eyes already 
produces a significant deformation, and further image processing is required to correct for an 
adequate blending with adjacent patches. 

In our previous research montaging OCTA images, we developed a parallel-strip 
registration algorithm in 2D [17] and 3D [18]. This method focused on removing motion 
artifacts and required a large overlapping area. Here, we propose a new mosaicking solution 
in which patches of the retina with limited overlapping areas are registered by a method based 
on invariant features [19,20]. The registered patches are seamlessly stitched by a panoramic 
image seamless stitching routine [21–24] using flow signal compensation. This method 
allows ultra-wide visualization of the retinal flow by OCTA, with a great potential to better 
assist clinicians in the assessment of retinal diseases. 

2. Data acquisition and preprocessing 

We developed an algorithm to montage separate OCTA images in order to achieve a wide 
field of view. Although we demonstrated the algorithm mainly on scans centered on the optic 
disc and macula, it can be applied on the scans through to the back of the eyes. The mean 
distance between disc and fovea was 4.76 ± 0.34 mm [25], and the mean disc-fovea angle was 
7.76 ± 3.63° [26]. Assuming the distance from the center of the FAZ to the optic disc is 
approximately 5 mm horizontally and about 1 mm vertically, if the two scans are perfectly 
centered the overlap between them would be approximately 1 mm horizontally and 5 mm 
vertically, with variations between subjects. 

Participants were scanned using a 70-kHz commercial AngioVue OCTA system (RTVue-
XR; Optovue, Fremont, CA) with the wavelength centered at 840nm. Scans covered a 6 × 6-
mm area, using a high-definition scan pattern with 400 × 400 sampling rate (15um/pixel). 
Two repeated B-scans at the same location were acquired and processed by the commercial 
version of the split-spectrum amplitude-decorrelation angiography (SSADA), which is 
sensitive to capillary flow. A horizontal-priority and a vertical-priority scan of the same area 
were collected and registered to suppress microsaccadic motions artifacts [27]. Ten eyes 
diagnosed with diabetic retinopathy (DR) and 10 normal eyes were scanned at different 
retinal landmarks to generate the wide-field OCTA. The DR eyes were scanned centering on 
the disc, fovea and temporal regions, ensuring a certain overlap between adjacent scans. 
Normal eyes were scanned centering on the disc and fovea to evaluate the proposed 
algorithm. 

During data preprocessing, retinal layers were segmented by a directional graph search 
algorithm incorporated in the COOL-ART software for OCTA image processing [28] (Fig. 
1(A)). Applying the projection-resolved algorithm [29,30], we could remove projection 
artifacts and visualize the retinal capillary plexuses in three different slabs located at different 
depths [31] (Fig. 1(B-G)), which are defined as the superficial vascular complex (SVC), the 
intermediate capillary plexus (ICP), and the deep capillary plexus (DCP). The combination of 
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three plexuses formed the inner retinal angiogram. Since the inner retinal angiogram is rich in 
microvascular details, it was used to detect the invariant features and to further estimate the 
optimal affine matrix to montage the en face angiograms of SVC, ICP, DCP, and the inner 
retina itself. 

 

Fig. 1. Illustration of retinal layer segmentation and angiogram generation on SVC (inner 80% 
of the ganglion cell complex (GCC)), ICP (outer 20% of the GCC and inner 50% of the inner 
nuclear layer (INL)), DCP (outer 50% of the INL and outer plexiform layer (OPL)), and inner 
retina (between the inner limiting membrane (ILM) and the OPL). 

3. Methods 

There were three key steps to generate the montaged, wide-field OCTA: accurate estimation 
of the affine transformation matrix, flow signal compensation, and seamless blending of the 
edge of overlapping areas. The estimated affine transformation matrix contains the global 
information used to rotate and shift one image to montage it with the other. The fine 
registration in the edge area registered the vessels regionally in order to smooth the edges. 
The flow signal compensation equalized the flow signal to generate a homogenized wide-field 
OCTA. 

3.1 Algorithm overview and data pre-processing 

The disc angiogram was selected as the target image (It) and the macular angiogram was the 
moving image (Im). Then, the invariant features were detected and matched by Speed-Up 
Robust-Features (SURF) algorithm [32], and further fine matching in local area followed by 
Random Sampling Consensus (RANSAC) algorithm [33] were applied to filter the outliers. 
The remaining paired points were used to infer the affine matrix. Then, in order to generate an 
even and seamless wide-field angiogram, a post-processing step including flow signal 
compensation and seamless blending was applied. The algorithm framework is described in 
Fig. 2. 

 

Fig. 2. Overview of the invariant features-based automated registration and montage algorithm. 
SURF – Speed-Up Robust Features. 

3.2 Invariant features-based registration and montage 

3.2.1 Affine transformation and features detection 

Stitching the moving angiogram (Im) to the target angiogram (It) consists of re-arranging the 
pixels of the moving angiogram to match their equivalents in the overlapping area of the 
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3.2.2 Angiograms registration and montage 

Each detected invariant feature had their unique feature descriptor. The key points with same 
sign (-/+) of the det(H) would conduct the matching process. We compared the invariant 
features from It with their corresponding ones in Im using the sum of squared differences 
(SSD): 

 ( ) ( ) ( ) ( ){ }, min ,t m t m
j

paired P i P j SSD P i P j=      ∈∀
 (3) 

where Pm(j) is the position of j-th SURF feature in Im, Pt(i) is the position of the i-th SURF 
feature in It. The nearest two points were paired. 

OCTA contains a rich vasculature, the image content is monotonic, and the local features 
are similar. For this reason, if the points of interest were grossly matched based on the feature 
descriptors only (Eq. (2), many of them could be erroneously paired (Fig. 4). These 
mismatches would cause failure of the random sample consensus (RANSAC) algorithm in 
trying to infer the affine transformation matrix A. The RANSAC algorithm was designed to 
find a homograph matrix (H) that could get the greatest number of pairs that can be properly 
transformed. Therefore, before applying RANSAC, we imposed two additional restrictions to 
improve the matching accuracy. 

For each pair, one point was taken from the moving image (Im) and represented by Pm 
whereas the other was taken from the target image (It) and represented by Pt. The SURF 
features of Pm and Pt were represented by (Om, Sm, Dm) and (Ot, St, Dt), where O is the 
orientation, S is the scale, and D is the feature descriptor. D was already used to grossly pair 
the SURF points. Then we used the orientation Om and scale Sm to locally rotate and resize the 
moving image and calculate the correlation with the target image in the paired local area (Fig. 
5). The differences of the orientation and scale between the two points of interest were 
calculated by: 

 
m t

m

t

O O O

SS S

Δ = −
 Δ =

 (4) 

If -π/8≤ΔO ≤π/8 and 1/2≤ΔS≤2, the points would be kept for the further descriptor comparison 
using Eq. (3). Otherwise, the two points would be marked with an “unmatchable” flag, 
assuming that scale and orientation should not have changed much between two adjacent 
scans. Some correctly matched and mismatched points were extracted from Fig. 4 to illustrate 
the differences of scale or orientation between mismatched points (Fig. 5). 
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seam, where the weight is 0.5 on both weights maps. The angiograms were filtered by 2D 
Gaussian kernels with multiple scales; the high-frequency information was extracted by 

 
( ) ( ) ( 1)( ) ( )

( 1) 2* ( )
k kDiff k G I G I

k k
σ σ

σ σ
+= −

 + =
 (9) 

When k = 0, we assign to Gσ(k)(I) the original image I 
The information on the scale was blended by 

 
( ) (t ) ( )

+ =1
b t k m k

t m

I k W Diff W Diff m

W W

= × + ×



 (10) 

where Ib(k) is the blended image on scale k, Wt is the weights map for the target angiogram, 
and Wm is the weights map for moving angiogram. The weights maps vary within [0, 1] from 
the one side of the seam to other. The center of the weights map is 0.5, aligning with the 
seam. The weights maps were illustrated on Fig. 9. Diff(tk) and Diff(mk) are the detected Diff 
values in Eq. (9) for the target and moving angiograms separately. 

On all scales, the blended images were summed up to get the seamless wide-field 
angiogram: 

 ( )
0

N

output b
k

I I k
=

=  (11) 

Where N is the number of scales, and Ioutput is final montaged seamless wide-field angiogram. 
In this study, N = 4. 

Comparing the montaged image after seamless blending (Fig. 10(A)) with the montaged 
angiogram without flow signal compensation in Fig. 8, the transition of the first seems 
smoother. By inspecting local areas about the seam, the vasculature exhibited a continuous 
appearance across the seam (Fig. 10(B-C)). 

 

Fig. 9. Illustration of the seamless blending routine. 
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dependent and would change considerably owing to reflectance variations between scans. As 
Fig. 8 demonstrated, the strength of the flow signals on the overlapping area between two 
scans can produce a very visible seam. Taking into account the factors above, SURF was 
selected to detect the invariant features. 

In the invariant features-based image registration task, RANSAC algorithm is usually 
used to remove the outliers, but it fails when the number of outliers exceeds the inliers. In this 
application, the images are composed of very rich vascular patterns and the image features are 
highly similar, causing plenty of mismatches (as in Fig. 4). In this case, when we set an 
iteration limitation, it is easy to reach to a wrong solution. To address this problem, we did a 
further verification of the matches utilizing their scale, rotation and the correlation between 
the surrounding areas. The number of inaccurate matches was greatly reduced, and only the 
highly correlated matches were reserved (Fig. 6). Then RANSAC could remove the 
remaining outliers to estimate the accurate affine matrix used to stitch the moving image onto 
the target image. 

There are a few limitations of the proposed automated seamless montage algorithm. An 
overlapping area is required for registration to estimate affine matrix. The overlapping area of 
the acquired data was 5 × 1-mm, but this is not the limitation of the proposed method. For the 
success montage, the overlapping area could be as small as 2 × 1-mm on normal eye, which 
was estimated by cropping the images to change the overlapping area. The other limitation is 
that at least 3 matches were required for the affine transformation estimation. Consequently, 
an inefficient number of angiograms need to be acquired from the subject in order to generate 
the wide-field view. For images with low quality on which pair key points could not be 
detected to match the features automatically, we can manually remove the mismatches or add 
matches to improve the accuracy of the estimated affine transformation. In this instance, this 
method would be a semi-automated, the further blending process could also be applied to 
generate the seamless WF montaged angiogram. 

In summary, this invariant features-based automated montage algorithm can stitch 
multiple angiograms to generate a seamless wide-field angiogram, which provides an efficient 
way to view the vascular changes in a wide FOV without requiring challenging hardware 
updates or invasive imaging methods using contrast dye. 
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